Equivalent **D**, F derivations, Phrase Markers, and Reduced Phrase Markers

Σ: S

F: $VP \rightarrow V NP$ $S \rightarrow NP VP$ $VP \rightarrow V NP$ $NP \rightarrow John$ $V \rightarrow likes$ $NP \rightarrow Mary$ $V \rightarrow likes$

The equivalent Σ , **F** derivations of "John likes Mary", given the above Σ , **F** grammar:

	S	S	S
NP	VP	NP VP	NP VP
John	VP	John VP	NP V NP
John	V NP	John V NP	John V NP
John	likes NP	John V Mary	John likes NP
John	likes Mary	John likes Mary	John likes Mary
	S	S	S
NP	VP	NP VP	NP VP
ND			
INF	V NP	NP V NP	NP V NP
John	V NP V NP	NP V NP NP likes NP	NP V NP NP V Mary
John John	V NP V NP V Mary	NP V NP NP likes NP John likes NP	NP V NP NP V Mary John V Mary
John John John	V NP V NP V Mary likes Mary	NP V NP NP likes NP John likes NP John likes Mary	NP V NP NP V Mary John V Mary John likes Mary

S		S		
NP	VP	NP	VP	
NP	V NP	NP	V NP	
NP	likes NP	NP	V Mary	
NP	likes Mary	NP	likes Mary	
John	likes Mary	John	likes Mary	

The **Phrase Marker** of "John likes Mary", given the above Σ , F grammar:

{S, NP VP, NP V NP, NP likes Mary, NP V Mary, NP likes NP, John VP, John V NP, John V Mary, John likes NP, John likes Mary}

[This set consists of all the lines occurring in any of the equivalent derivations of "John likes Mary", given the above Σ , F grammar]

The **Reduced Phrase Marker** of "John likes Mary", given the above Σ , F grammar:

{S, NP likes Mary, John VP, John V Mary, John likes NP, John likes Mary}

[This set is the subset of the Phrase Marker consisting of the terminal string plus all the monostrings (the strings containing exactly one non-terminal surrounded by any number of terminal symbols) Lasnik and Kupin observed that this set suffices to compute all the 'is a' relations.]

Collapsed derivation tree for "John likes Mary", given the above Σ , F grammar:

